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Abstract. After reexamining the above-barrier diffusion problem where we notice that the wave packet
collision implies the existence of multiple reflected and transmitted wave packets, we analyze the way of
obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the
idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which
frequently arise when the stationary phase method is adopted for computing the (tunneling) phase-time
expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave
packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed
by summing the amplitudes of simultaneously reflected and transmitted wave components so that the con-
ditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the
stationary phase method are drawn.

PACS. 02.30.Mv; 03.65.Xp

The recent developments of nanotechnology brought about
a new urgency to study the tunneling time as it is directly
related to the maximum attainable speed of nanoscale elec-
tronic devices. In parallel, a series of recent experimental
results [1–13], some of them corroborating the possibility
of superluminal tunneling speeds for photons, have revived
an interest in the tunneling time analysis [14–18]. On the
theoretical front, people have tried to introduce quantities
that have the dimension of time and can somehow be asso-
ciated with the passage of the particle through the barrier
or, strictly speaking, with the definition of the tunneling
time. Since a long time these efforts have led to the in-
troduction of several time definitions [14, 19–30], some of
which are completely unrelated to the others, which can
be organized into three groups. (1) The first group com-
prises a time-dependent description in terms of wave pack-
ets where some features of an incident wave packet and
the comparable features of the transmitted packet are uti-
lized to describe a delay as a tunneling time [18]. (2) In
the second group the tunneling times are computed based
on averages over a set of kinematical paths, whose distri-
bution is supposed to describe the particle motion inside
a barrier, i.e. Feynman paths are used like real paths to cal-
culate an average tunneling time with the weighting func-
tion exp [iSx(t)/h̄], where S is the action associated with
the path x(t) (where x(t) represents the Feynman paths
initiated from a point on the left of the barrier and ending
at another point on the right of it [31]). The Wigner dis-
tribution paths [27], and the Bohm approach [32, 33] are
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included in this group. (3) In the third group we notice
the introduction of a new degree of freedom, constituting
a physical clock for the measurements of tunneling times.
Separately, standing on itself is the dwell time approach.
The time related to the tunneling process is defined by the
interval during which the incident flux has to exist and act,
to provide the expected accumulated particle storage, in-
side the barrier [16]. The methods with a Larmor clock [21]
or an oscillating barrier [34] are comprised by this group.
There is no general agreement [14, 17] among the above

definitions about the meaning of tunneling times (some of
the proposed tunneling times are actually traversal times,
while others seem to represent in reality only the spread
of their distributions) and about which, if any, of them is
the proper tunneling time, in particular, due to the fol-
lowing reasons [14]: (a) the problem of defining tunneling
times is closely connected with the more general definition
of the quantum-collision duration, and therefore with the
fundamental fact that in quantum mechanics, time enters
as a parameter rather than as an observable to which an
operator can be assigned; (b) the motion of particles in-
side a potential barrier is a quantum phenomenon, that till
now has been devoid of any direct classical limit; (c) there
are essential differences among the initial, boundary and
external conditions assumed within the various definitions
proposed in the literature; those differences have not been
sufficiently analyzed yet.
In particular, the study of tunneling mechanisms is em-

bedded by theoretical constructions involving analytically-
continuous gaussian, or infinite-bandwidth step pulses to
examine the tunneling process. Nevertheless, such holo-
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morphic functions do not have a well-defined front in
a manner that the interpretation of the wave packet speed
of propagation becomes ambiguous. Moreover, infinite-
bandwidth signals cannot propagate through any real
physical medium (whose transfer function is therefore fi-
nite) without pulse distortion, which also leads to ambi-
guities in determining the propagation velocity during the
tunneling process. For instance, some of the barrier traver-
sal time definitions lead, under tunneling time conditions,
to very short times which can even become negative, pre-
cipitately inducing an interpretation of violation of simple
concepts of causality. Otherwise, negative speeds do not
seem to create problems with causality, since they were
predicted both within special relativity and within quan-
tum mechanics [28]. A possible explanation of the time
advancements related to the negative speeds can come, in
any case, from consideration of the very rapid spreading of
the initial and transmitted wave packets for large momen-
tum distribution widths. Due to the similarities between
tunneling (quantum) packets and evanescent (classical)
waves, exactly the same phenomena are to be expected in
the case of classical barriers (we can mention the analogy
between the stationary Helmholtz equation for an elec-
tromagnetic wave packet – in a waveguide, for instance –
in the presence of a classical barrier and the stationary
Schroedinger equation, in the presence of a potential bar-
rier [16, 29, 35]). The existence of such negative times is
predicted by relativity itself, on the basis of the ordinary
postulates [14], and they appear to have been experimen-
tally detected in many works [36–40].
In this extensively explored scenario, the first group

quoted above contains the so-called phase times [41, 42]
which are obtained when the stationary phase method
(SPM) [43] is employed for obtaining the times related
to the motion of the wave packet spatial centroid which
adopts averages over fluxes pointing in a well-defined di-
rection only, and which has recourse to a quantum op-
erator for time [14]. Generically speaking, the SPM es-
sentially enables us to parameterize some subtleties of
several quantum phenomena, such as tunneling [5–10, 18,
27], resonances [44], incidence–reflection and incidence–
transmission interferences [45] as well as the Hartman ef-
fect [48] and its superluminal traversal time interpreta-
tion [14, 16, 29]. In fact, it is the simplest and most usual
approximation method for describing the group velocity of
a wave packet in a quantum scattering process represented
by a collision of a particle with a potential barrier [14, 16,
22, 23, 42, 48, 49].
Our attention is particularly concentrated on some lim-

itations on the use of the SPM for deriving tunneling times
for which we furnish an accurate quantification of the ana-
lytical incongruities which restrict the applicability of this
method. We introduce a theoretical construction involv-
ing a symmetrical collision with a unidimensional square
potential where the scattered wave packets can be recon-
structed by summing the amplitudes of the reflected and
transmitted waves in the scope of what we denominate
a multiple peak decomposition analysis [49] in a manner
that the analytical conditions for the SPM applicability are
totally recovered.

Generically speaking, the SPM can be successfully uti-
lized for describing the movement of the center of a wave
packet constructed in terms of a momentum distribution
g(k− k0) which has a pronounced peak around k0. By
assuming the phase which characterizes the propagation
varies sufficiently smoothly around the maximum of g(k−
k0), the stationary phase condition enables us to calculate
the position of the peak of the wave packet (highest proba-
bility region to find the propagating particle). With regard
to the tunneling effect, the method is indiscriminately ap-
plied to find the position of a wave packet which traverses
a potential barrier. For the case in which we consider the
potential barrier

V (x) =

{
V0, x ∈ [−L/2, L/2] ,

0, x �∈ [−L/2, L/2] ,
(1)

it is well known that the transmitted wave packet solution
(x≥ L/2) calculated by means of the Schroedinger formal-
ism is given by [50]

ψT(x, t) =

∫ w
0

dk

2π
g(k−k0)|T (k, L)|

× exp

[
ik(x−L/2)− i

k2

2m
t+iΘ(k, L)

]
,

(2)

where, in case of tunneling, the transmitted amplitude is
written as

|T (k, L)|=

{
1+

w4

4k2ρ2(k)
sinh2 [ρ(k)L]

}− 12
, (3)

and the phase shift is obtained in terms of

Θ(k, L) = arctan

{
2k2−w2

kρ(k)
tanh [ρ(k)L]

}
, (4)

for which we have made explicit the dependence on the

barrier length L, and we have adopted ρ(k) =
(
w2−k2

) 1
2

with w = (2mV0)
1
2 and h̄ = 1. Without thinking over an

eventual distortion that |T (k, L)| causes to the supposedly
symmetric function g(k−k0), when the stationary phase
condition is applied to the phase of (3), we obtain

d

dk

{
k(x−L/2)−

k2

2m
t+Θ(k, L)

}∣∣∣∣
k=kmax

= 0 ⇒

x−L/2−
kmax

m
t+
dΘ(k, L)

dk

∣∣∣∣
k=kmax

= 0 . (5)

The above result is frequently adopted for calculating the
transit time tT of a transmitted wave packet when its peak
emerges at x= L/2,

tT =
m

kmax

dΘ(k, α(L))

dk

∣∣∣∣
k=kmax

=
2mL

kmaxα

{
w4 sinh (α) cosh (α)−

(
2k2max−w

2
)
k2maxα

4k2max (w
2−k2max)+w

4 sinh2 (α)

}
,

(6)
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where we have introduced the parameterα=
(
w2−k2max

) 1
2

L. The concept of opaque limit appears when we assume
that kmax is independent of L and then we make α tend to
∞ [29]. In this case, the transit time can be rewritten as

tOLT =
2m

kmaxρ(kmax)
. (7)

In the literature, the value of kmax is frequently approx-
imated by k0, the maximum of g(k−k0), which, in fact,
does not depend on L and, under the theoretical point of
view, could lead to the superluminal transmission time in-
terpretation [17, 29, 54].
It would be perfectly acceptable to consider kmax = k0

for the application of the stationary phase condition if the
momentum distribution g(k−k0) centered at k0 had not
been modified by any boundary condition. This is the case
of the incident wave packet before colliding with the po-
tential barrier. Our criticism is concerned with the way of
obtaining all the above results for the transmitted wave
packet. It has not taken into account the bounds and en-
hancements imposed by the analytical form of the trans-
mission coefficient.
To perform the correct analysis, we should calculate the

right value of kmax to be substituted in (6) before taking
the opaque limit. We should be obliged to consider the rel-
evant amplitude for the transmitted wave as the product
of a symmetric momentum distribution g(k−k0) which de-
scribes the incoming wave packet by the modulus of the
transmission amplitude T (k, L) which is a crescent func-
tion of k. The maximum of this product representing the
transmission modulating function would be given by the
solution of the equation

g(k−k0) |T (k, L)|

[
g′(k−k0)

g(k−k0)
+
|T (k, L)|′

|T (k, L)|

]
= 0 . (8)

Obviously, the peak of the modified momentum distribu-
tion is shifted to the right of k0 so that kmax has to be found
in the interval ]k0, w[. It could be numerically confirmed
that kmax presents an implicit dependence on L so that,
by increasing the value of L with respect to a, the value of
kmax to be utilized in (6) would increase until L reaches cer-
tain values for which the modified momentum distribution
becomes unavoidably distorted. In this case, the relevant
values of k are concentrated around the upper boundary
value w.
Due to the filter effect , the amplitude of the transmitted

wave is essentially composed by the plane wave compo-
nents of the front tail of the incoming wave packet which
reaches the first barrier interface before the peak arrival.
Meanwhile, only whether we had cut the momentum distri-
bution off at a value of k smaller than w, i.e. k ≈ (1− δ)w,
the superluminal interpretation of the transition time (7)
could be recovered. In this case, independently of the way
that α tends to ∞, the value assumed by the transit time
would be approximated by tαT ≈ 2m/wδ which is a finite
quantity. Such a finite value would confirm the hypothesis
of superluminality. However, the cut off of the momentum
distribution at k ≈ (1− δ)w increases the amplitude of the

tail of the incident wave and so it contributes relevantly as
the peak of the incident wave to the final composition of
the transmitted wave, so that an ambiguity in the defin-
ition of the arrival time is created.
We are particularly convinced that the use of a step-

discontinuity to analyze signal transmission in tunneling
processes deserves a more careful analysis than the imme-
diate application of the stationary phase method, since we
cannot find an analytic-continuation between the above-
barrier case solutions and the below -barrier case solutions.
As suggestive possibility we may ask for the use of the
multiple peak decomposition technique developed for the
above-barrier diffusion problem [49]. Thus, in a similar
framework, we suggest a suitable way for comprehend-
ing the conservation of probabilities for a very particular
tunneling configuration where the asymmetric aspects dis-
cussed up to now can be totally eliminated, with the phase
times being accurately calculated. By means of such an
experimentally verifiable exercise, we shall be able to un-
derstand how the filter effect can analytically affect the
calculations of transit times in the tunneling process.
In order to recover the scattered momentum distribu-

tion symmetry conditions for correctly applying the SPM,
we assume a symmetrical colliding configuration of two
wave packets traveling in opposite directions. By consid-
ering the same barrier represented in (1), we solve the
Schroedinger equation for a plane wave component of mo-
mentum k for two identical wave packets symmetrically
separated from the origin x= 0. At time t=−(mL)/(2k0)
chosen for mathematical convenience, we assume that they
perform a totally symmetric simultaneous collision with
the potential barrier. The wave packet reaching the left
(right) side of the barrier is thus represented by

ψL(R)(x, t) =

∫ ∞
0

dkg(k−k0)φ
L(R)(k, x) exp [−iEt] , (9)

where, as a first approximation,we are assuming that the in-
tegral can be naturally extended from the interval [0, w] to
the interval [0,∞]. Its range of validity can be controlled by
the choice of the width ∆k of the momentum distribution
g(k− k0) (with k0 > 0), i.e. ∆k has to be bounded by the
barrier’s high (V0) in order to avoid the contribution of the
above-barrier frequencies (or energies) contained in the con-
sideredwave packet (which eventually become important as
the tunneling components are progressively damped).
By assuming that φL(R)(k, x) are Schroedinger equa-

tion solutions, when the wave packet peaks simultaneously
reach the barrier (at the time t = −(mL)/(2k0)) we can
write

φL(R)(k, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
L(R)
1 (k, x) = exp [±ikx]+RL(R)B (k, L)

× exp [∓ikx]

x <−L/2(x > L/2),

φ
L(R)
2 (k, x) = α

L(R)
B (k) exp [∓ρx]

+β
L(R)
B (k) exp [±ρx]

L/2< x < L/2,

φ
L(R)
3 (k, x) = T

L(R)
B (k, L) exp [±ikx]

x > L/2(x <−L/2) ,
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where the upper (lower) sign is related to the index L(R).
By assuming the conditions for the continuity of φL,R and
their derivatives at x = −L/2 and x = L/2, after some
mathematical manipulations, we can easily obtain

RL,RB (k, L) = exp [−ikL]

×

{
exp [iΘ(k, L)] [1− exp [2ρ(k)L]]

1− exp [2ρ(k)L] exp [iΘ(k, L)]

}
(10)

and

TL,RB (k, L) = exp [−ikL]

×

{
exp [ρ(k)L] [1− exp [2iΘ(k, L)]]

1− exp [2ρ(k)L] exp [iΘ(k, L)]

}
,

(11)

where Θ(k, L) is given by the (4) and RLB(k, L) and
TRB (k, L) as well as R

R
B(k, L) and T

L
B(k, L) are intersect-

ing each other. By analogy with the procedure of summing
amplitudes which we have adopted in the multiple peak
decomposition scattering [49], such a pictorial configura-
tion obliges us to sum the intersecting amplitude of prob-
abilities before taking their squared modulus in order to
obtain

RL,RB (k, L)+T
R,L
B (k, L)

= exp [−ikL]

{
exp [ρ(k)L]+exp [iΘ(k, L)]

1+exp [ρ(k)L] exp [iΘ(k, L)]

}
= exp {−i[kL+ϕ(k, L)]} , (12)

with

ϕ(k, L) = arctan

{
2kρ(k) sinh [ρ(k)L]

w2+(k2−ρ2(k)) cosh [ρ(k)L]

}
. (13)

The important information we get from the relation given
by (12) is that, differently from the previous standard tun-
neling analysis, by adding the intersecting amplitudes at
each side of the barrier, we keep the original momentum
distribution undistorted, since |RL,RB (k, L)+T

R,L
B (k, L)| is

equal to one. At this point we recover the most fundamen-
tal condition for the applicability of the SPM which allows
us to accurately find the position of the peak of the recon-
structed wave packet composed by reflected and transmit-
ted superposing components.
The phase-time interpretation can be, in this case, cor-

rectly quantified in terms of the analysis of the new phase
ϕ(k, L). By applying the stationary phase condition to the
recomposed wave packets, the maximal point of the scat-
tered amplitudes g(k−k0)|R

L,R
B (k, L)+T

R,L
B (k, L)| are ac-

curately given by kmax = k0 so that the traversal/reflection
time or, more generically, the scattering time, results in

tϕT =
m

k0

dϕ(k, α(L))

dk

∣∣∣∣
k=k0

=
2mL

k0α

w2 sinh (α)−αk20
2k20−w

2+w2 cosh2 (α)
, (14)

with α previously defined. It can be said metaphorically
that the identical particles represented by both incident
wave packets spend a time of the order of tϕT inside the
barrier before retracing their steps or tunneling. In fact,
we cannot differentiate the tunneling from the reflecting
waves for such a scattering configuration. The point is
that we have introduced a possibility of improving the ef-
ficiency of the SPM in calculating reflecting and tunneling
phase times by studying a process where the conditions
for applying the method are totally recovered, i.e. we have
demonstrated that the transmitted and reflected interfer-
ing amplitudes results in a unimodular function which just
modifies the envelop function g(k− k0) by an additional
phase. The previously appointed incongruities which cause
the distortion of the momentum distribution g(k−k0) are
completely eliminated in this case. At the same time, one
could argue about the possibility of extending such a result
to the tunneling process established in a standard way. We
should assume that in the region inside the potential bar-
rier, the reflecting and transmitting amplitudes should be
summed before we compute the phase changes. Obviously,
it would result in the same phase-time expression as repre-
sented by (14). In this case, the assumption of there (not)
existing interference between the momentum amplitudes
of the reflected and transmitted waves at the discontinuity
points x=−L/2 and x= L/2 is purely arbitrary. Conse-
quently, it is important to reinforce the argument that such
a possibility of interference leading to different phase-time
results is strictly related to the idea of using (or not) the
multiple peak (de)composition in the region where the po-
tential barrier is localized.
In order to illustrate the difference between the stan-

dard tunneling phase time tT and the alternative scatter-
ing phase time tϕT we introduce the new parameter n =
k2max/w

2 and the classical traversal time τ = (mL)/kmax in
order to define the ratios

RT(α) =
tT

τ
=
2

α

{
cosh (α) sinh (α)−αn (2n−1)[
4n (1−n)+sinh2 (α)

]
}

(15)

and

RϕT(α) =
tϕT
τ
=
2

α

{
nα+sinh (α)

2n−1+cosh(α)

}
, (16)

which are plotted in the Fig. 1 for some discrete values of n
varying from 0 to 1, from which we can obtain the common
limits given by

lim
α→∞

{RϕT(α)}= limα→∞
{RT(α)}= 0 (17)

and

lim
α→0
{RT(α)}= 1+

1

2n
, lim

α→0
{RϕT(α)}= 1+

1

n
. (18)

Both present the same asymptotic behavior which, at first
glance, recovers the theoretical possibility of a superlu-
minal transmission in the sense that, by now, the SPM
can be correctly applied since the analytical limitations
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Fig. 1. Time ratios for the standard tunneling and the new
scattering process. The ratios R(α) and Rφ(α) can be under-
stood as transmitted times in units of the classical propagation
time τ . Both present the same asymptotic behavior which re-
covers the theoretical possibility of a superluminal transmission
in the sense that by now, from the point of view of the analyti-
cal limitations, the SPM can be accurately applied

are accurately observed. At this point, it is convenient to
notice that the superluminal phenomena, observed in the
experiments with tunneling photons and evanescent elec-
tromagnetic waves [1–13], has generated a lot of discus-
sions on relativistic causality. In fact, superluminal group
velocities in connection with quantum (and classical) tun-
nelings were predicted even on the basis of tunneling time
definitions more general than the simple Wigner’s phase
time [42] (Olkhovsky et al., for instance, discuss a sim-
ple way of understanding the problem [14]). In a causal
manner, it might consist in explaining the superluminal
phenomena during tunneling as simply due to a reshaping
of the pulse, with attenuation, as already attempted (at the
classical limit) [46], i.e. the later parts of an incoming pulse
are preferentially attenuated, in such a way that the out-
coming peak appears shifted towards earlier times even if
it is nothing but a portion of the incident pulse’s forward
tail [5–10, 47]. In particular, we do not intend to extend on
the delicate question whether superluminal group veloci-
ties can sometimes imply superluminal signaling, a contro-
versial subject which has been extensively explored in the
literature about the tunneling effect ([14] and references
therein).
Turning back to the scattering time analysis, we can

observe an analogy between our results and the results in-
terpreted from the Hartman effect (HE) analysis [48]. The
HE is related to the fact that for opaque potential barri-
ers the mean tunneling time does not depend on the barrier
width, so that for large barriers the effective tunneling vel-
ocity can become arbitrarily large, where it was found that
the tunneling phase time was independent of the barrier
width. It seems that the penetration time, needed to cross
a portion of a barrier, in the case of a very long barrier
starts to increase again after the plateau corresponding to

infinite speed proportionally to the distance1. Our phase-
time dependence on the barrier width is similar to that
which leads to the Hartman interpretation as we can infer
from (17)–(18). Only when α tends to 0 we have an explicit
linear time dependence on L given by

tϕT =
2mL

w

(
1+
1

n

)
(19)

which agrees with calculations based on the simple phase-
time analysis where tT =

2mL
w

(
1+ 1

2n

)
. However, it is im-

portant to emphasize that the wave packets for which we
compute the phase times illustrated in Fig. 1 are not ef-
fectively constructed with the same momentum distribu-
tions. The phaseΘ(k, L) appears when we treat separately
the momentum amplitudes g(k− k0)|T (k, L)| and g(k−
k0)|R(k, L)|, and the other one ϕ(k, L) appears when we
sum the amplitudes g(k− k0)|T (k, L)+R(k, L)| = g(k−
k0) in order to obtain a symmetrical distribution thus “re-
qualifying” the SPM to exactly determine the time pos-
ition of the peak of a wave packet. In this sense, as a sugges-
tive possibility for partially overcoming the incongruities
(here pointed out and quantified) which appear when we
adopt the SPM framework for obtaining tunneling phase
times, we have claimed the relevance of the use of the mul-
tiple peak decomposition [49] technique presented in the
study of the above-barrier diffusion problem [49]. We have
essentially suggested a suitable way for comprehending the
conservation of probabilities for a very particular tunneling
configuration where the asymmetry presented in the pre-
vious case was eliminated, and the phase times could be
accurately calculated. This is an example for which, we be-
lieve, we have provided a simple but convincing resolution.
In a more extended context, there also have been some

attempts of yielding complex time delays, ultimately due
to a complex propagation constant. This has caused some
controversies with denying the physical reality to an imag-
inary time [47]. In parallel to the most sensible candidate
for tunneling times [16, 18], a phase-space approach has
been used to determine a semi-classical traversal time [51].
This semi-classical method makes use of the concept of
complex trajectories which, in its turn, enables the defin-
ition of real traversal times in the complexified phase space.
It is also commonly quoted in the context of testing differ-
ent theories for temporal quantities such as arrival, dwell
and delay times [16, 18] and the asymptotic behavior at
long times [29, 52]. The configuration we have introduced
in this manuscript suggests that perhaps the idea of com-
plexifying time should be investigated for some other scat-
tering configurations. We mention for a subsequent analy-
sis the suggestive possibility of investigating the validity
of our approach when confronted with the phenomenon of
one-dimensional non-resonant tunneling through two suc-
cessive opaque potential barriers [53] and with the intrigu-
ing case of multiple opaque barriers [54]. Still concerned
with the future theoretical perspectives, the symmetrical
colliding configuration also offers the possibility of explor-
ing some applications involving soliton structures. Finally,

1 The validity of the HE was tested for all the other theoret-
ical expressions proposed for the mean tunneling times [14].
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we believe that all the above arguments reinforce the asser-
tion that it is necessary to continue the search for a gen-
eralized framework where barrier traversal times can be
computed.
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